Journal of Organometallic Chemistry, 155 (1978) 229–236 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SCHWINGUNGS- UND UV-SPEKTREN VON HALOGENOAMMINDICARBONYLOSMIUM(II)-KOMPLEXEN

H.-Chr. FRICKENSCHMIDT und W. PREETZ*

ž.

Institut für anorganische Chemie der Christian-Albrechts-Universität, 23 Kiel 1, Olshausenstr. 40–60 (B.R.D.)

(Eingegangen den 13. März 1978)

Summary

The structure of the complexes cis- $[OsX_2(NH_3)_2(CO)_2]$ and fac- $[OsX(NH_3)_3$ - $(CO)_2]X$ (X = Cl, Br, I) is confirmed by assignment of their IR and Raman spectra. The different *trans*-effect of the ligands causes characteristic shifts of certain vibrations. The UV spectra of the colourless or light yellow complexes show weak d-d-transitions of the central ion in the region around 300 nm.

Zusammenfassung

Die Struktur der Komplexe cis- $[OsX_2(NH_3)_2(CO)_2]$ und fac- $[OsX(NH_3)_3(CO)_2]$ -X (X = Cl, Br, J) wird durch Zuordnung der IR- und Ramanspektren abgesichert. Der unterschiedliche *trans*-Effekt der Liganden bewirkt charakteristische Verschiebungen bestimmter Schwingungsbanden. Im UV-Spektrum der farblosen oder schwach gelben Komplexe beobachtet man im Bereich um 300 nm schwache d-d-Übergänge am Zentralion.

Einleitung

Kürzlich berichteten wir über die Darstellung mehrerer Glieder aus der Reihe der dreifach gemischten Komplexe des Typs cis- $[OsX_n(NH_3)_{4-n}(CO)_2]^{-n+2}$ (n = 0-4, X = Cl, Br, J) [1]. Der unterschiedliche *trans*-Effekt der drei beteiligten Liganden ermöglichte die stereospezifische Darstellung verschiedener Isomerer, deren strukturelle Zuordnung aufgrund mechanistischer Überlegungen und der unterschiedlichen Polarität, die aus dem chromatographischen Verhalten abgeleitet wurde, erfolgte. Zur Absicherung wurden jetzt von cis- $[OsCl_2^*(NH_3)_2(CO)_2]$, cis- $[OsBr_2^*(NH_3)_2(CO)_2]$, cis- $[Os(ClBr)^*(NH_3)_2(CO)_2]$ und cis- $[OsCl_2(NH_3)_2^*(CO)_2]$ (* kennzeichnet Paare *trans*-ständiger Liganden) sowie von fac- $[OsX(NH_3)_3(CO)_2]$ -X (X = Cl, Br, J), die IR- und Ramanspektren gemessen und in Einklang mit der angenommenen Komplexsymmetrie interpretiert. Die wechselseitige Beeinflussung der Liganden kommt in charakteristischen Verschiebungen bestimmter Schwingungen zum Ausdruck. Die UV-Spektren der farblosen oder schwach gelben Komplexe weisen im Bereich um 300 nm eine oder zwei schwache Absorptionen auf, die d-d-Übergängen am Zentralion zugeordnet werden.

Ergebnisse und Diskussion

IR- und Ramanspektren

Die Halogenoammincarbonylkomplexe leiten sich von den Stammverbindungen cis- $[OsCl_4(CO)_2]^{2-}$ bzw. cis- $[Os(NH_3)_4(CO)_2]^{2+}$ ab. Über beide liegen eingehende schwingungsspektroskopische Untersuchungen vor, die wichtige Vergleichsmöglichkeiten bieten [2—5]. In den oktaedrischen Komplexen mit drei verschiedenen Liganden ist die cis-Dicarbonyl-Gruppierung erhalten geblieben. Der wechselseitige Austausch der NH₃- und Halogen-Liganden führt zu verschiedenen Stereoisomeren.

Die Neutralkomplexe cis- $[OsX_2^*(NH_3)_2(CO)_2]$ und cis- $[OsX_2(NH_3)_2^*(CO)_2]$ gehören zur Punktgruppe C_{2v} mit den Ligandmetallgrundschwingungen der Rassen $6A_1 + 2A_2 + 3B_1 + 4B_2$, den CO-Schwingungen der Rassen $2A_1 + A_2 + B_1 + 2B_2$ und den charakteristischen Frequenzen der NH₃-Gruppe. Alle Schwingungen sind IR- und Raman-aktiv mit Ausnahme der der Rasse A_2 , die nur im Ramanspektrum erlaubt sind. Bei cis- $[Os(CIBr)^*(NH_3)_2(CO)_2]$ und den Verbindungen des Typs fac- $[OsX(NH_3)_3(CO)_2]^*$ mit C_s -Symmetrie ist die Anzahl der Schwingungen die gleiche. Sie sind symmetrisch, A', oder antisymmetrisch, A'', zur vertikalen Spiegelebene. Von diesen sind im allgemeinen die A'-Schwingungen im Raman-Spektrum intensiver als im IR-Spektrum. Für die A''-Frequenzen gelten die umgekehrten Intensitätsverhältnisse. Komplexe des gleichen Typs ergeben sehr ähnliche Schwingungspektren, so dass diese nur für das Isomerenpaar cis- $[OsCl_2^*-(NH_3)_2(CO)_2]$ und cis- $[OsCl_2(NH_3)_2(CO)_2]$ sowie für fac- $[OsCl(NH_3)_3(CO)_2]Cl$ in Fig. 1—3 wiedergegeben sind. Die gemessenen Frequenzen und ihre Zuordnung sind in Tab. 1 und 2 zusammengestellt.

Die Lage bestimmter Frequenzen der CO- und NH_3 -Gruppen sowie der Metall-Ligandschwingungen ist abhängig von der Elektronendichte am Zentralion. Die im Vergleich zu Cl⁻ geringere *trans*-Wirkung des NH_3 , die früher an den Tetrachloro- bzw. Tetrammin-dicarbonylen aufgezeigt wurde [1], lässt sich auch bei den Isomeren *cis*-[OsCl₂(NH_3)^{*}₂(CO)₂] und *cis*-[OsCl^{*}₂(NH_3)₂(CO)₂] nachweisen.

Sind die trans-Positionen zu den CO-Gruppen mit NH₃ besetzt, so liegen die ν (CO)-Frequenzen um 10-30 cm⁻¹ kurzwelliger, als wenn sich dort Cl befindet. Im ersten Fall ist wegen der geringeren Donorwirkung der Ammingruppen die Elektronendichte am Zentralion geringer und dadurch die Rückbindung zu den Carbonylgruppen schwächer. Die mehr oder weniger starke Aufspaltung der asymmetrischen CO-Valenzschwingung ν_{16} ist auf Kristallfeldeffekte zurückzuführen. Bei Messung in acetonischer Lösung wird sie nicht beobachtet. Die in allen untersuchten Komplexen unverändert bleibende *cis*-Dicarbonyl-Gruppierung zeigt sich im Bereich von 500-650 cm⁻¹ durch die nahezu gleichbleibende Lage der ν (Os-C)- und δ (Os-CO)-Banden an.

Die deutlichsten Unterschiede für das Isomerenpaar ergeben sich im Os-Cl-Valenzschwingungsbereich. cis-[OsCl^{*}₂(NH₃)₂(CO)₂] zeigt im IR-Spektrum nur

Fig. 1. IR- (oben) und Ramanspektrum (unten) von cis-[OsCl^{*}₂(NH₃)₂(CO)₂].

Fig. 2. IR- (oben) und Ramanspektrum (unten) von *cis*-[OsCl₂(NH₃)^{*}₂(CO)₂].

Fig. 3. IR- (oben) und Ramanspektrum (unten) von fac-[OsCl(NH₃)₃(CO)₂]Cl.

231

			nde = 10)	H3)2(CO)2]	Ramun	ßß	14a	i0s 3250(3)	948 3183(5)		48				.03 1315(1)	8 2	188 Date:		
			v zur stärksten Ba	[Os(BrCl) [*] (N	IR	334	330	320	316		161				132	129	AZT .		66
			nsitäten: relati	H ₃) [*] (CO) ₂]	Raman	3368(2)	3313(2)	3276(2)	3228(4)										
			; Raman-Into	[OsCl ₂ (N	IR	3376m	3337m	3286w	3239m	m/uze	1648w	1610w	1671w		1335w		ßß		
		H3)2 (CO)2]	ulter; br, breit	(H ₃)2(CO)2]	Ranan	3330(1)	3300(1)		3253(2)	3183(2)		1616w			1310w				
		cls-[OsX2(N]	sehr; sh, Sch	[OsBrŽ()	IR	33585	33099		3250m	3187m	16285	16165	1606m		1305s	12785	760w		723vw
		l (cm ⁻¹) FÜR	w, schwach; v,	II ₃)2(CO) ₂]	Raman	3308(5)	3254(4)		3189(6)			1635w			1309w			760vw	
.*		WINGUNGEN	k; m, mittel; v	[OsCI [‡] (N	IR	3319s	32825	32695	3196m		1642(sh)	1633m	1.624m	1588w	13085	12995	11201 (111) 807 vw	774w	746w
		ANSCH	n: 8, star	C _{3V}		য			١v		ভ				41		а		
	TABELLE 1	IR- UND RAM.	(IR-Intensitäte	Schwingungen		ν _{as} (N−H)			(H-N) ⁸ /		(ehn)				0 ⁸ (NH3)		0(NH4)		

232

•

			•	-														
					۰.		•											
	2047(6)	1957(8)			•	565(2)	543(4)	530(7)	621(sh)	466(1)	490(sh)	313(4)	220(10)	260(4)(br)		160(2)		
	2054s	1075vs		642s	599s	565vw	536(sh)	631s	518m	437w	488w	317vs	207s	265w				
రి	Y	ч"		У"	۲	ч"	, V	, V	, V	A,	Α"	Α'	۷,					
	2023(10)	1955(2)	1921(6)	647(1)		578(1)	547(10)	521(3)(sh)	514(7)	458w	481w	297(1)				204(4)		
	2046s	1942vs		658w	613w		542(sh)	526m	614m		485w	301s	2748	243m	236m	262vw		
	2042(2)	1955(2)				559w	543(2)	634(2)	520(1)	446w			195(10)	256vw	235w	173vw		
	2046vs	1956s		640m	592s	564vw	641w	633s	511(sh)			232ins		256w		422vw 104	1117-01	والمحافظة المراجعة والمناخصين فالمحاجة المحافظ والمراجع
	2039(9)	1988(2)	1953(10)	636vw	691(1)	562(1)	636(8)		513(3)	450(1)		322(3)	306(5)	253(1)		424vw	(1),177	
	2064vs	1979vs	1951vs	642w	599m	563vw	535s	630(sh)	513vw		480w	323vs		260w	246w	433W 206	182w	
C_{2v}	41	B_2		B_2	B1	A2	Δ1	AI	$\mathbf{B_2}$	A1	B_2	BI	Υ1					
	1 P(CO)	16 V(CO)		17 δ(OBCO)	12 8(0sCO)	⁹ δ (OsCO)	2 5 (OsCO)	' ₃ ν(OsC)	18 µ(0sC)	v(08N)	(N80)/	v(0sX)	ν(0sX)	(NosON)	-	ndere		

ပံ

ပ်

233

- -

•

•

.

.

.

.

•

~	
H	
Ξ	
BE	
Ę	

Schwingungen	C3U	[08Cl(NH ₃)3	(CO)2]CI	[OBBr(NH ₃) ₃ (C	0) ₂]Br	[OsJ(NH ₃) ₃ (CC	V[2(C	
		IR	Raman	IR	Raman	II	Raman	
ns(N-II)	R	32418	3296(3)	32368	3234(5)	3236s	3220(10)	
5(NH3)	1 8	1660m	(e)nate	1631m	(0)0915	31068 1623m	1624vw 1624vw	
		1573w		TUDBUT		•	MADOOT	
(EHIJ)	٩I	1352m		1347m	1351(1)	1339vw	1350(2)	
		1303m		Walter	1302(1)	1309m	1331(2)	
(NH3)	Я	885w		863w		839w		
		855w		838w		814w		
		M401		M70/		MOO		
	ບ ⁸							
μ] μ(CO)	'V	2050vs	2037(10)	2062s	2038(10)	20478	2033(7)	
ν ₁₆ ν(CO)	Α"	1968vs	1075(3)	1969vs	1978(2)	1970vs	1973(4)	
		1944vs	1947(5)	1946vs	1963(1)	1956vs	1951(6)	
⁰ 17 b(0sC("v (c	640m	644vw	641w	656vw	634m	689vw	
V12 & 6(0sC)V (C	604m	597(2)	602m	697w	593m	593(1)	
vg 8(0sCl), A	572vw	570(3)	565vw	565(1)	547w	553(2)	
v2 & 6(09CI) V (544(sh)	543(sh)	541sh	542sh	532m	537(sh)	
ν ₃ ν(0sC)	Α'	637m	636(10)	637m	531(5)	528m	528(7)	
v18 v(0sC)	A"		621 (sh)	614w	614(2)	508vw	610(3)	
V5 V(OSN)	A,	504w	601(4)	492vw	491(3)	476m	474(6)	
V19 V(OSN)	' V	443vw	447w		438vw	432w		
ν4 ν(OsX)	A	310m	309(4)	216m	218(4)	166m	167(8)	
δ (NOg.	(7	247m(br)		266m(br)	276(1)	262m(br)	262(3)	
		· .		245m	266(2)		244(2)	
andere		209m		909m	100/1)	18Km	101/11/	
				11373	141234	111007	TITOT	

die sehr starke asymmetrische Os-Cl-Valenzschwingung (B_1) bei 323 cm⁻¹. Sie ist im Ramanspektrum (322 cm⁻¹) deutlich schwächer als die zugehörige symmetrische Schwingung bei 305 cm⁻¹ (A_1) . In cis- $[OsCl_2(NH_3)_2^*(CO)_2]$ stehen die Cl-Liganden den stark trans-aktiven CO-Gruppen gegenüber. In den IR-Spektren findet man stark langwellig verschoben zwei intensive Banden bei 301 cm⁻¹ (A_1) und 274 cm⁻¹ (B_2) . Im Ramanspektrum wird nur die A_1 -Schwingung beobachtet.

Entsprechende, allerdings geringere Bandenverschiebungen ergeben sich für die wesentlich schwächeren Os-N-Valenzschwingungen der beiden Isomeren. Im Vergleich zu den Os-C- liegen die Os-N-Schwingungen bei deutlich niedrigeren Frequenzen. In Übereinstimmung mit anderen Untersuchungen [6] verschiebt sich bei fac-[OsX(NH₃)₃(CO)₂]X die symmetrische Os-N-Schwingung ν_5 beim Austausch von Cl gegen J von etwa 500 cm⁻¹ nach 475 cm⁻¹.

Bei den NH-Valenzschwingungen fällt auf, dass diese bei den Neutralkomplexen in der Regel scharf und mehrfach aufgespalten sind, während man bei den kationischen Verbindungen breitere Banden findet. Ursache dafür dürften Wasserstoffbrückenwechselwirkungen mit den Anionen sein. Die Aufspaltung der NH₃-Banden hängt von dem bezüglich zum Zentralion symmetrischen oder unsymmetrischen Charakter der Schwingungen ab [2].

Absorptionsspektren

Die farblosen oder nur sehr schwach gelben Halogenoammincarbonyle des Os(II) weisen erwartungsgemäss wegen des vollbesetzten t_{2g} -Niveaus (d^6) im sichtbaren Gebiet keine Absorptionsbanden auf. Im UV-Bereich (bis 50 000 cm⁻¹) wird ein starker Anstieg, aber nicht das Maximum des ersten Charge-Transfer-Übergangs beobachtet. Am Fuss der sehr starken Bande zeichnet sich in allen untersuchten Fällen um 300 nm ein schwacher aber scharfer Peak ab. Unter Bezug auf die ansteigende Grundlinie werden die korrigierten Werte für den molaren Extinktionskoeffizienten, ϵ_{korr} berechnet, die in Tab. 3 zusammengestellt sind. Der Grössenordnung nach handelt es sich um eine Zentralionenbande, vermutlich um den spinerlaubten Übergang ¹ $A_1 \rightarrow {}^{1}T_1$ [5,7].

TABELLE 3

Komplex	ν (cm ⁻¹)	λ (nm)	$\epsilon_{korr.}$ (cm ² mMol ⁻¹)	
cis-[Os(NH3)4(CO)2]Cl2	33560	298	210	
fac-[Os(NH3)3(CO)3]Cl2	33450	299	90	
fac-[OsCl(NH3)3(CO)2]Cl	33560	298	190	
fac-[OsBr(NH3)3(CO)2]Br	33560	298	360	
fac-[OsJ(NH ₃) ₃ (CO) ₂]J	33560	298	760	
cis-[OsCl2(NH3)2(CO)2]	31740	315	50	
cis -[OsCl ₂ (NH ₃) $\frac{1}{2}$ (CO) ₂]	33780	296	120	
cis-[OsBr2(NH3)2(CO)2]	30300	330	340	
cis-[Os(BrCl)*(NH3)2(CO)2]	30770	325	340	
	33330	300	60	

ABSORPTIONSMAXIMA UND MOLARE EXTINKTIONSKOEFFIZIENTEN DER HALOGENO-AMMINCARBONYLOSMIUM(II)-KOMPLEXE

Experimentelles

Die IR-Spektren wurden an KBr-Presslingen bei 10 K mit Beckman-Geräten im Bereich von 400–4000 cm⁻¹ (IR 9) und im fernen Bereich (IR 11) gemessen. Die Aufnahme der Ramanspektren erfolgte an den reinen Substanzen bei Raumtemperatur mit einem Cary 82 mit Argonlaser (514.5 nm). Gewisse Abweichungen in der Lage der einander im IR- und Ramanspektrum entsprechende Banden sind auf den grossen Temperaturunterschied bei der Messung zurückzuführen.

Die UV-Spektren wurden an glasartigen KBr-Presslingen mit einem Acta M-VII (Beckman) bei etwa 10 K registriert [8]. Ca. 1 mg der Komplexverbindungen wird mit 1.5 g KBr in einer Mikromühle staubfein verrieben. 300 mg dieses Gemenges werden mit einem Vakuumpresswerkzeug zu einer durchsichtigen Tablette von 13 mm Durchmesser verarbeitet. Der molare Extinktionskoeffizient ϵ (cm² mMol⁻¹) errechnet sich nach:

$$\epsilon = \frac{(m_{\rm c} + m_{\rm KBr})M_{\rm c}r^2}{m_{\rm p}m_{\rm c}}E$$

 $E = \text{Extinktion}, m_c = \text{Einwaage}$ an Komplexverbindung (mg), $m_{\text{KBr}} = \text{Einwaage}$ an KBr (mg), $m_p = \text{Gewicht des Presslings (mg)}, M_c = \text{Molgewicht des Komplexes}$ r = Radius des Presslings (cm).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie für die Unterstützung unserer Arbeit.

Literatur

- 1 H.-Chr. Frickenschmidt und W. Preetz, J. Organometal. Chem., im Druck.
- 2 H.-Chr. Frickenschmidt und W. Preetz, J. Organometal. Chem., 146 (1978) 285.
- 3 F.H. Johannsen, W. Preetz und A. Scheffler, J. Organometal. Chem., 102 (1976) 527.
- 4 M.W. Bee, S.F.A. Kettle und D.B. Powell, Spectrochim. Acta A, 30 (1974) 1637.
- 5 A.D. Allen und J.R. Stevens, Can. J. Chem., 50 (1972) 3093.
- 6 A.D. Allen und C.V. Senoff, Can. J. Chem., 45 (1967) 1337.
- 7 A.D. Allen, T. Eliades, R.O. Harris und V.P. Reinsalu, Can. J. Chem., 47 (1969) 1605.
- 8 W. Preetz und H. Homborg, Z. Anorg. Allg. Chem., 415 (1975) 8.